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1 Introduction 
1.1 Purpose 
Plants and ecosystems have highly disparate water consumption (i.e., evapotranspiration, ET) 
needs based on their evolutionary histories, local plasticity and adaptations. Some plants are more 
efficient with their water use than others, subsequently fixing relatively greater amounts of carbon 
(C) through photosynthesis (gross primary production, GPP) per unit of water lost through ET. 
This C gain relative to water lost is termed the Water Use Efficiency (WUE) [Stanhill, 1986; 
Stewart and Steiner, 1990; Steduto, 1996]. During times of water shortage or drought, less water 
use efficient plants may be more vulnerable to stress or mortality than are plants with higher WUE 
[Keenan et al., 2013]. Knowing what and where the WUE is of different plants and ecosystems 
will advance the understanding of how the terrestrial biosphere is responding to changes in climate. 
A relatively high spatial resolution is necessary to capture WUE differences in ecosystems with 
diverse species assemblages. 
ECOSTRESS produces ET over the entire ECOSTRESS domain as a Level-3 product, L3(ET_PT-
JPL) [Fisher and ECOSTRESS Algorithm Development Team, 2018]. To generate WUE the 
L4(WUE) product must ingest an ancillary GPP product to combine with the L3 ET product 
concurrently measured/produced during the L3 ET ECOSTRESS production.  
In this Algorithm Theoretical Basis Document (ATBD), we describe the calculation of WUE and 
the ingestion of the GPP product. The theoretical basis for the ECOSTRESS ET is described in 
the ECOSTRESS L3(ET_PT-JPL) ATBD. The ECOSTRESS L4(WUE) product is a value-added 
product to ECOSTRESS. 
 
1.2 Scope and Objectives 
In this ATBD, we provide: 

1. Description of the general form of the WUE equation; 
2. Description of the GPP ancillary data ingestion. 

 
 
2 Parameter Description and Requirements 
Attributes of the WUE data required by the ECOSTRESS mission include: 

• Spatial resolution of 70 m x 70 m; 

• Latency as required by the ECOSTRESS Science Data System (SDS) processing system; 

• Includes all geographic terrestrial regions visible by the ECOSTRESS instrument (i.e., the 
Prototype HyspIRI Thermal Infrared Radiometer; PHyTIR) from the ISS, with priorities 
to the ECOSTRESS Science Objective 1 Water Use Efficiency (WUE) target regions 
(“hotspots”), the ECOSTRESS Science Objective 3 agricultural regions (e.g., the 
Contiguous United States; CONUS), and the Cal/Val sites (Figure 1). 
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3 Algorithm Selection 
The WUE algorithm must satisfy basic criteria to be applicable for the ECOSTRESS mission: 

• Physically defensible; 

• Globally applicable; 

• High sensitivity and dependency on remote sensing measurements; 

• Relative simplicity necessary for high volume processing; 

• Demonstrated sensitivity to vegetation drought conditions; 

• Published record of algorithm maturity, stability, and validation. 

 

 
Figure 1. Uncertainty in Water Use Efficiency (WUE) from global models is highlighted in the red areas 
(“hotspots”). ECOSTRESS will target these regions. 
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4 Water Use Efficiency Retrieval 
4.1 Gross Primary Production (GPP) 

The MODIS product is ideal for ECOSTRESS because it aligns with the other MODIS ancillary 
products already being ingested into the L3(ET_PT-JPL) algorithm/product, it is given at relatively 
high spatial and temporal resolutions (1 km, 8-day), and has been vetted in the scientific literature 
[Heinsch et al., 2006; Turner et al., 2006; Zhang et al., 2012] (Figure 2).  
 
The GPP product is ingested operationally into the JPL L3/L4 team’s data production stream. The 
MOD17 8-day estimate of GPP in kilograms of carbon per square meter is multiplied by 1,000, to 
convert to the units from kilograms to grams, and then divided by eight to convert the time-step to 
daily. This daily measure of carbon uptake is divided by the L3(ET_PT-JPL) daily ET in kilograms 
per square meter to calculate the ratio of grams of carbon ingested to kilograms of water lost. This 
product is supplied as WUE back to the SDS for delivery to the DAAC according to the 
ECOSTRESS data delivery schedule.  
  

 
Figure 2. Gross Primary Production (GPP) from MODIS. [Zhao et al., 2005] 



ECOSTRESS LEVEL-4 WATER USE EFFICIENCY L4(WUE) ATBD 

 4 

4.2 Daily Evapotranspiration (ET) 
Latent heat flux at the daily temporal scale is estimated by assuming the evaporative fraction 
(𝐸𝐹) at the time of observation remains stable during daylight hours. This fraction is calculated 
from instantaneous latent heat flux (𝐴𝐸𝑇), instantaneous net radiation (𝑅&) and instantaneous 
soil heat flux (𝐺) retrieved from the ECOSTRESS L3(ET_PT-JPL) product [Fisher and 
ECOSTRESS Algorithm Development Team, 2018]: 

𝐸𝐹 =
𝐴𝐸𝑇
𝑅& − 𝐺

	

 

(1) 

Daily average latent heat flux is obtained by multiplying this evaporative fraction with the daily 
integration of net radiation (𝑅&,,-./0) described in the ECOSTRESS L3(ET_PT-JPL) ATBD 
[Fisher and ECOSTRESS Algorithm Development Team, 2018]: 
𝐿𝐸, = 𝐸𝐹 ∗ 𝑅&,,-./0	
 

(2) 

Latent heat flux represents evapotranspiration in terms of a rate of transfer of energy into water 
as watts per square meter. To accumulate this rate over the course of the day, latent heat flux 
(𝐿𝐸,) is multiplied by the number of seconds of daylight between sunrise and sunset (𝐷𝐿). To 
convert this amount of energy into an amount of water, we divide by a latent heat of vaporization 
of 2.45 million joules per kilogram (λ). This results in daily evapotranspiration (ET) in kilograms 
of water evaporated per square meter over the course of the day. This is equivalent to change in 
height of water in millimeters. 

𝐸𝑇 = 𝐿𝐸, ∗
𝐷𝐿
𝜆 	

(3) 



ECOSTRESS LEVEL-4 WATER USE EFFICIENCY L4(WUE) ATBD 

 5 

4.3 Water Use Efficiency (WUE) 
Water user efficiency (WUE) is defined as the ratio of the amount of carbon fixed in units of GPP 
(g C m-2 d-1) per amount of water lost in units of ET (kg H2O m-2 d-1), which reduces to a daily 
ratio (g C kg-1 H2O): 

𝑊𝑈𝐸 =
𝐺𝑃𝑃
𝐸𝑇  

(4) 

High values indicate efficient plants, and low values indicate inefficient plants. The theoretical 
basis and algorithmic procedures for producing ET are described in the ECOSTRESS L3(ET_PT-
JPL) ATBD [Fisher and ECOSTRESS Algorithm Development Team, 2018]. 
An example of the ECOSTRESS WUE with MODIS GPP for a single granule is given in Figure 
3. The accuracy of the WUE is dependent on the accuracies of the L3(ET_PT-JPL) and GPP 
products. Higher accuracies and precisions enable small detection differences between 
ecosystems. 
 
  

 
Figure 3. ECOSTRESS WUE (GPP/ET) product output example over California’s Central Valley on August 
5th, 2018, showing regions of low water use efficiency in red and high water use efficiency in blue. 
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4.4 Spatial Resolution 
The L3(ET_PT-JPL) ECOSTRESS product will be given at 70 m x 70 m spatial resolution (though 
with caveats—see, L3(ET_PT-JPL) ATBD). The GPP product will be provided at a spatial 
resolution coarser than ECOSTRESS, e.g., 1 km x 1 km from MODIS. The GPP product will be 
sub-sampled to match the 70 m x 70 m ECOSTRESS spatial resolution both for consistency as 
well as use of the high resolution of the ET product; however, we caution analyses of WUE at less 
than 1 kilometer as the mixed resolution of the source data are between 70 m and 1 km, and the 
variability of the output product depends on the relative sensitivity of WUE to the high-resolution 
ET for any given place and time, as well as the relative sub-pixel heterogeneity of the coarse-
resolution GPP. 
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5 Mask/Flag Derivation 
The L3(ET_PT-JPL) quality flags are carried over identically to L4(WUE). No additional quality 
flags are incorporated from those provided by the ancillary GPP product (Table 1): 
 
   

Table 1. ECOSTRESS L4(WUE) MODIS ancillary data flags and responses to poor quality. 

Input product Quality Flag Response to poor quality 
MODIS GPP N/A N/A 
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6 Metadata 
• unit of measurement: units of GPP per units of ET (g C kg-1 H2O) 
• range of measurement: 0 to 10 
• projection: ECOSTRESS swath 
• spatial resolution: 70 m x 70 m 
• temporal resolution: dynamically varying with precessing ISS overpass; instantaneous 

throughout the day, local time 
• spatial extent: all land globally, excluding poleward ±60° 
• start date time: near real-time 
• end data time: near real-time 
• number of bands: not applicable 
• data type: float 
• min value: 0 
• max value: 3000 
• no data value: 9999 
• bad data values: 9999 
• flags: quality level 1-4 (best to worst) 
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